Authored by zhaojun2

Merge branch 'master' into zj_groupshop

... ... @@ -21,7 +21,7 @@ import org.springframework.stereotype.Component;
import org.springframework.util.Assert;
import com.yoho.search.base.utils.SearchPageIdDefine;
import com.yoho.search.core.personalized.PersonalizedSearch;
import com.yoho.search.core.personalized.models.PersonalizedSearch;
import com.yoho.search.models.FirstShelveTimeScore;
import com.yoho.search.service.scorer.YohoFilterFunctionBuilders;
import com.yoho.search.common.SearchDynamicConfigService;
... ...
... ... @@ -2,7 +2,7 @@ package com.yoho.search.service.recall.beans.builder;
import com.yoho.search.base.utils.CollectionUtils;
import com.yoho.search.base.utils.Transfer;
import com.yoho.search.core.personalized.PersonalizedSearch;
import com.yoho.search.core.personalized.models.PersonalizedSearch;
import com.yoho.search.core.personalized.models.SortPriceAreas;
import com.yoho.search.service.recall.beans.persional.ProductFeatureFactorComponent;
import com.yoho.search.service.recall.config.RecallConfigConstants;
... ...
package com.yoho.search.service.recall.beans.persional;
import com.yoho.search.base.helper.Word2VectorCalculator;
import com.yoho.search.core.personalized.PersonalizedSearch;
import com.yoho.search.core.personalized.models.PersonalizedSearch;
import com.yoho.search.service.recall.models.personal.UserFeatureFactor;
import org.apache.commons.lang.StringUtils;
import org.slf4j.Logger;
... ...
package com.yoho.search.service.recall.beans.persional;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.yoho.core.rest.client.ServiceCaller;
import com.yoho.search.core.personalized.models.*;
import com.yoho.search.core.personalized.models.UserPersonalFactorRspNew;
import com.yoho.search.core.personalized.service.BidataServiceCaller;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
... ... @@ -16,11 +14,9 @@ import java.util.List;
public class UserPersionalFactorComponent {
private static final Logger RECALL_NEW_LOGGER = LoggerFactory.getLogger("RECALL");
private static final String SERVICE_NAME = "bigdata.searchPersonalFactors";
private static final int timeOut = 100;
@Autowired
private ServiceCaller serviceCaller;
private BidataServiceCaller bidataServiceCaller;
/**
* 获取用户的个性化因子
... ... @@ -31,10 +27,7 @@ public class UserPersionalFactorComponent {
*/
public UserPersonalFactorRspNew queryUserPersionalFactor(int uid, String udid, List<Integer> misortIds) {
try {
UserPersonalFactorReq userPersionalFactorReq = new UserPersonalFactorReq(uid, udid, misortIds);
JSONObject result = serviceCaller.call(SERVICE_NAME, userPersionalFactorReq, JSONObject.class, timeOut);
JSONObject userPersonalFactorRspJSon = result.getJSONObject("data");
UserPersonalFactorRspNew rsp = JSON.toJavaObject(userPersonalFactorRspJSon, UserPersonalFactorRspNew.class);
UserPersonalFactorRspNew rsp = bidataServiceCaller.queryUserPersionalFactor(uid, udid, misortIds);
if (rsp == null) {
rsp = new UserPersonalFactorRspNew();
}
... ...
package com.yoho.search.service.recall.models.personal;
import com.yoho.search.core.personalized.PersonalizedSearch;
import com.yoho.search.core.personalized.models.PersonalizedSearch;
import java.util.ArrayList;
import java.util.List;
... ...
... ... @@ -3,7 +3,7 @@ package com.yoho.search.service.scorer.personal;
import com.alibaba.fastjson.JSONObject;
import com.yoho.search.cache.CacheType;
import com.yoho.search.aop.cache.SearchCacheAble;
import com.yoho.search.core.personalized.BigDataRedisService;
import com.yoho.search.core.personalized.service.BidataServiceCaller;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
... ... @@ -17,14 +17,14 @@ public class PersonalGenderFeatureSearch {
private static final Logger logger = LoggerFactory.getLogger(PersonalGenderFeatureSearch.class);
@Autowired
private BigDataRedisService bigDataRedisService;
private BidataServiceCaller bidataServiceCaller;
@SearchCacheAble(cacheInMinute = 30, cacheName = "USER_GENDER_FEATURE", returnClass = JSONObject.class, cacheType = CacheType.SEARCH_REDIS, includeParams = {"uid"})
public JSONObject queryUserGenderFeature(Map<String, String> paramMap) {
try {
JSONObject jsonObject = new JSONObject();
Map<String, Float> userGenderFloat = bigDataRedisService.getUserGenderFeature(paramMap.getOrDefault("uid", "0"));
if(userGenderFloat!=null){
Map<String, Float> userGenderFloat = bidataServiceCaller.getUserGenderFeature(paramMap.getOrDefault("uid", "0"));
if (userGenderFloat != null) {
jsonObject.putAll(userGenderFloat);
}
return jsonObject;
... ...
package com.yoho.search.service.scorer.personal;
import com.yoho.search.base.utils.DateUtil;
import com.yoho.search.cache.CacheType;
import com.yoho.search.aop.cache.SearchCacheAble;
import com.yoho.search.core.personalized.BigDataRedisService;
import com.yoho.search.core.personalized.PersonalizedSearch;
import com.yoho.search.core.personalized.version.PersonalVersionManager;
import com.yoho.search.cache.CacheType;
import com.yoho.search.core.personalized.models.PersonalizedSearch;
import com.yoho.search.core.personalized.service.BidataServiceCaller;
import com.yoho.search.core.personalized.service.PersonalVersionManager;
import org.apache.commons.lang3.StringUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import java.util.Calendar;
import java.util.HashMap;
import java.util.Map;
@Service
... ... @@ -21,13 +18,10 @@ public class PersonalVectorFeatureSearch {
private static final Logger logger = LoggerFactory.getLogger(PersonalVectorFeatureSearch.class);
private static final Double BASE_CONSTANT = 1.0D;
private static final Double FACTOR_CONSTANT = 0.8D;
@Autowired
private PersonalVersionManager personalVersionManager;
@Autowired
private BigDataRedisService bigDataRedisService;
private BidataServiceCaller bidataServiceCaller;
@SearchCacheAble(cacheInMinute = 30, cacheName = "PERSIONAL_VECTOR", returnClass = PersonalizedSearch.class, cacheType = CacheType.SEARCH_REDIS, includeParams = { "uid" })
public PersonalizedSearch getPersonalizedSearch(Map<String, String> paramMap) {
... ... @@ -43,7 +37,7 @@ public class PersonalVectorFeatureSearch {
return null;
}
// 3. 获取用户的特征向量
String userVectorFeature = bigDataRedisService.getUserVectorFeature(uid, vectorFeatureVersion);
String userVectorFeature = bidataServiceCaller.getUserVectorFeature(uid, vectorFeatureVersion);
if (StringUtils.isEmpty(userVectorFeature)) {
return null;
}
... ... @@ -53,99 +47,5 @@ public class PersonalVectorFeatureSearch {
return null;
}
}
/**
* 根据UID和SKN列表获取特征相关性评分,该方法用于测试和问题定位
*
* @param uid
* 用户标识
* @param productVectorFeatureMap
* 商品特征map
* @return 相关性计算结果
*/
public Map<String, Object> calVectorFeature(String uid, String version, Map<String, String> productVectorFeatureMap) {
Map<String, Object> scoreMap = new HashMap<>();
if (productVectorFeatureMap == null || productVectorFeatureMap.isEmpty()) {
scoreMap.put("productVectorFeatureMap", "empty");
return scoreMap;
}
String vectorFeatureVersion = StringUtils.isNotEmpty(version) ? version : personalVersionManager.getCurrentVersionInZk();
scoreMap.put("vectorFeatureVersion", vectorFeatureVersion);
if (StringUtils.isEmpty(vectorFeatureVersion) || "-1".equals(vectorFeatureVersion)) {
return scoreMap;
}
// 2. 获取用户的特征向量
String userVectorFeature = bigDataRedisService.getUserVectorFeature(uid, vectorFeatureVersion);
scoreMap.put("userVectorFeature", userVectorFeature);
if (StringUtils.isEmpty(userVectorFeature)) {
return scoreMap;
}
String[] userFeatureFactorArr = userVectorFeature.split(",");
double tempUserFeatureVectorNorm = 0.0D;
int dimensionOfFactors = userFeatureFactorArr.length;
double[] userFeatureFactors = new double[dimensionOfFactors];
double temp;
for (int index = 0; index < dimensionOfFactors; index++) {
temp = Double.parseDouble(userFeatureFactorArr[index].trim());
userFeatureFactors[index] = temp;
tempUserFeatureVectorNorm += temp * temp;
}
final double userFeatureVectorNorm = tempUserFeatureVectorNorm;
scoreMap.put("userFeatureVectorNorm", userFeatureVectorNorm);
scoreMap.put("dimensionOfFactors", dimensionOfFactors);
// 3. 计算相关性得分
productVectorFeatureMap.forEach((skn, vector) -> {
Map<String, Object> content = new HashMap<String, Object>();
content.put("vector", vector);
content.put("score", calculateScore(vector, vectorFeatureVersion, userFeatureFactors, userFeatureVectorNorm));
scoreMap.put(skn, content);
});
return scoreMap;
}
public double calculateScore(String productFeatureFactor, String vectorFeatureVersion, double[] userFeatureFactors, double userFeatureVectorNorm) {
if (productFeatureFactor == null || productFeatureFactor.trim().isEmpty()) {
return BASE_CONSTANT;
}
String versionPrefix = vectorFeatureVersion + "|";
if (!productFeatureFactor.trim().startsWith(versionPrefix)) {
return BASE_CONSTANT;
}
String[] productFeatureFactorArr = productFeatureFactor.trim().substring(versionPrefix.length()).split(",");
if (productFeatureFactorArr == null || productFeatureFactorArr.length != userFeatureFactors.length) {
return BASE_CONSTANT;
}
double prodFeatureVectorNorm = 0.0D;
double productiveSum = 0.0D;
double tempProdFactor;
for (int i = 0; i < userFeatureFactors.length; i++) {
tempProdFactor = Double.parseDouble(productFeatureFactorArr[i].trim());
productiveSum += tempProdFactor * userFeatureFactors[i];
prodFeatureVectorNorm += tempProdFactor * tempProdFactor;
}
if (prodFeatureVectorNorm == 0) {
return BASE_CONSTANT;
}
double cosScore = productiveSum / (Math.sqrt(prodFeatureVectorNorm) * Math.sqrt(userFeatureVectorNorm));
double finalScore = BASE_CONSTANT + FACTOR_CONSTANT * cosScore;
return finalScore;
}
public static void main(String[] args) {
Calendar now = Calendar.getInstance();
now.add(Calendar.YEAR, -1);
System.out.println(DateUtil.getFirstTimeSecond(now.getTime()));
}
}
... ...
... ... @@ -17,15 +17,3 @@ redis:
readOnly:
- 192.168.102.216:6379
primary: no
yohoSearchBigDataRedis:
cluster: false
sync: false
auth:
timeout: 1000
servers:
- 192.168.102.216:6379
readOnly:
- 192.168.102.216:6379
primary: no
... ...
... ... @@ -18,14 +18,3 @@ redis:
- ${search.redis.address}:${search.redis.port}
primary: no
yohoSearchBigDataRedis:
cluster: false
sync: false
auth: ${bigDataRedis-search.proxy.auth}
timeout: 1000
servers:
- ${bigDataRedis-search.proxy.address}:${bigDataRedis-search.proxy.port}
readOnly:
- ${bigDataRedis-search.proxy.address}:${bigDataRedis-search.proxy.port}
primary: no
... ...