Authored by wangnan9279

Merge branch 'gray0520' into wn_cutdown_price_for_0530

@@ -27,7 +27,7 @@ public class ToolsController { @@ -27,7 +27,7 @@ public class ToolsController {
27 27
28 @RequestMapping(value = "/vectorVersion") 28 @RequestMapping(value = "/vectorVersion")
29 public Map<String, Object> vectorVersion() { 29 public Map<String, Object> vectorVersion() {
30 - Map<String, Object> results = new HashMap<String, Object>(); 30 + Map<String, Object> results = new HashMap<>();
31 //大数据目前推荐的版本 31 //大数据目前推荐的版本
32 String bigDataRecomDateStr = personalVectorVersionManager.getBigDataRecomDateStr(); 32 String bigDataRecomDateStr = personalVectorVersionManager.getBigDataRecomDateStr();
33 results.put("bigDataRecomDateStr", bigDataRecomDateStr == null ? "" : bigDataRecomDateStr); 33 results.put("bigDataRecomDateStr", bigDataRecomDateStr == null ? "" : bigDataRecomDateStr);
@@ -42,14 +42,23 @@ public class ToolsController { @@ -42,14 +42,23 @@ public class ToolsController {
42 42
43 @RequestMapping(value = "/bigdataServiceTest") 43 @RequestMapping(value = "/bigdataServiceTest")
44 public Map<String, Object> bigdataServiceTets(Integer uid) { 44 public Map<String, Object> bigdataServiceTets(Integer uid) {
45 - Map<String, Object> results = new HashMap<String, Object>(); 45 + Map<String, Object> results = new HashMap<>();
  46 +
46 //大数据目前推荐的版本 47 //大数据目前推荐的版本
47 - String bigDataRecomDateStr = bidataServiceCaller.getBigDataRecomDateStr(); 48 + String bigDataRecomDateStr = personalVectorVersionManager.getBigDataRecomDateStr();
48 results.put("bigDataRecomDateStr", bigDataRecomDateStr == null ? "" : bigDataRecomDateStr); 49 results.put("bigDataRecomDateStr", bigDataRecomDateStr == null ? "" : bigDataRecomDateStr);
49 - results.put("userFavoriteSizes", bidataServiceCaller.getUserFavoriteSizes(uid.toString())); 50 + results.put("bigDataRecomDateStrFeatures", bidataServiceCaller.getUserVectorFeature(uid.toString(), bigDataRecomDateStr));
  51 +
  52 + //zk中目前的版本
  53 + String currentVersionInZk = personalVectorVersionManager.getCurrentVersionInZk();
  54 + results.put("currentVersionInZk", currentVersionInZk == null ? "" : currentVersionInZk);
  55 + results.put("currentVersionInZkFeatures", bidataServiceCaller.getUserVectorFeature(uid.toString(), currentVersionInZk));
  56 +
  57 + //用户性别偏好
50 results.put("userGenderFeature", bidataServiceCaller.getUserGenderFeature(uid.toString())); 58 results.put("userGenderFeature", bidataServiceCaller.getUserGenderFeature(uid.toString()));
  59 + //用户尺码偏好
51 results.put("userFavoriteSizes", bidataServiceCaller.getUserFavoriteSizes(uid.toString())); 60 results.put("userFavoriteSizes", bidataServiceCaller.getUserFavoriteSizes(uid.toString()));
52 - results.put("userVectorFeature", bidataServiceCaller.getUserVectorFeature(uid.toString(), bigDataRecomDateStr)); 61 + //用户个性化因子
53 results.put("userPersionalFactor", bidataServiceCaller.queryUserPersionalFactor(uid, null, null)); 62 results.put("userPersionalFactor", bidataServiceCaller.queryUserPersionalFactor(uid, null, null));
54 return results; 63 return results;
55 } 64 }