PJ_tpeqd.c
2.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#define PROJ_PARMS__ \
double cp1, sp1, cp2, sp2, ccs, cs, sc, r2z0, z02, dlam2; \
double hz0, thz0, rhshz0, ca, sa, lp, lamc;
#define PJ_LIB__
#include <projects.h>
PROJ_HEAD(tpeqd, "Two Point Equidistant")
"\n\tMisc Sph\n\tlat_1= lon_1= lat_2= lon_2=";
FORWARD(s_forward); /* sphere */
double t, z1, z2, dl1, dl2, sp, cp;
sp = sin(lp.phi);
cp = cos(lp.phi);
z1 = aacos(P->sp1 * sp + P->cp1 * cp * cos(dl1 = lp.lam + P->dlam2));
z2 = aacos(P->sp2 * sp + P->cp2 * cp * cos(dl2 = lp.lam - P->dlam2));
z1 *= z1;
z2 *= z2;
xy.x = P->r2z0 * (t = z1 - z2);
t = P->z02 - t;
xy.y = P->r2z0 * asqrt(4. * P->z02 * z2 - t * t);
if ((P->ccs * sp - cp * (P->cs * sin(dl1) - P->sc * sin(dl2))) < 0.)
xy.y = -xy.y;
return xy;
}
INVERSE(s_inverse); /* sphere */
double cz1, cz2, s, d, cp, sp;
cz1 = cos(hypot(xy.y, xy.x + P->hz0));
cz2 = cos(hypot(xy.y, xy.x - P->hz0));
s = cz1 + cz2;
d = cz1 - cz2;
lp.lam = - atan2(d, (s * P->thz0));
lp.phi = aacos(hypot(P->thz0 * s, d) * P->rhshz0);
if ( xy.y < 0. )
lp.phi = - lp.phi;
/* lam--phi now in system relative to P1--P2 base equator */
sp = sin(lp.phi);
cp = cos(lp.phi);
lp.phi = aasin(P->sa * sp + P->ca * cp * (s = cos(lp.lam -= P->lp)));
lp.lam = atan2(cp * sin(lp.lam), P->sa * cp * s - P->ca * sp) + P->lamc;
return lp;
}
FREEUP; if (P) pj_dalloc(P); }
ENTRY0(tpeqd)
double lam_1, lam_2, phi_1, phi_2, A12, pp;
/* get control point locations */
phi_1 = pj_param(P->params, "rlat_1").f;
lam_1 = pj_param(P->params, "rlon_1").f;
phi_2 = pj_param(P->params, "rlat_2").f;
lam_2 = pj_param(P->params, "rlon_2").f;
if (phi_1 == phi_2 && lam_1 == lam_2) E_ERROR(-25);
P->lam0 = adjlon(0.5 * (lam_1 + lam_2));
P->dlam2 = adjlon(lam_2 - lam_1);
P->cp1 = cos(phi_1);
P->cp2 = cos(phi_2);
P->sp1 = sin(phi_1);
P->sp2 = sin(phi_2);
P->cs = P->cp1 * P->sp2;
P->sc = P->sp1 * P->cp2;
P->ccs = P->cp1 * P->cp2 * sin(P->dlam2);
P->z02 = aacos(P->sp1 * P->sp2 + P->cp1 * P->cp2 * cos(P->dlam2));
P->hz0 = .5 * P->z02;
A12 = atan2(P->cp2 * sin(P->dlam2),
P->cp1 * P->sp2 - P->sp1 * P->cp2 * cos(P->dlam2));
P->ca = cos(pp = aasin(P->cp1 * sin(A12)));
P->sa = sin(pp);
P->lp = adjlon(atan2(P->cp1 * cos(A12), P->sp1) - P->hz0);
P->dlam2 *= .5;
P->lamc = HALFPI - atan2(sin(A12) * P->sp1, cos(A12)) - P->dlam2;
P->thz0 = tan(P->hz0);
P->rhshz0 = .5 / sin(P->hz0);
P->r2z0 = 0.5 / P->z02;
P->z02 *= P->z02;
P->inv = s_inverse; P->fwd = s_forward;
P->es = 0.;
ENDENTRY(P)