PJ_ob_tran.c
4.11 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#ifndef lint
static const char SCCSID[]="@(#)PJ_ob_tran.c 4.1 94/02/15 GIE REL";
#endif
#define PROJ_PARMS__ \
struct PJconsts *link; \
double lamp; \
double cphip, sphip;
#define PJ_LIB__
#include "projects.h"
#include <string.h>
PROJ_HEAD(ob_tran, "General Oblique Transformation") "\n\tMisc Sph"
"\n\to_proj= plus parameters for projection"
"\n\to_lat_p= o_lon_p= (new pole) or"
"\n\to_alpha= o_lon_c= o_lat_c= or"
"\n\to_lon_1= o_lat_1= o_lon_2= o_lat_2=";
#define TOL 1e-10
FORWARD(o_forward); /* spheroid */
double coslam, sinphi, cosphi;
(void) xy;
coslam = cos(lp.lam);
sinphi = sin(lp.phi);
cosphi = cos(lp.phi);
lp.lam = adjlon(aatan2(cosphi * sin(lp.lam), P->sphip * cosphi * coslam +
P->cphip * sinphi) + P->lamp);
lp.phi = aasin(P->sphip * sinphi - P->cphip * cosphi * coslam);
return (P->link->fwd(lp, P->link));
}
FORWARD(t_forward); /* spheroid */
double cosphi, coslam;
(void) xy;
cosphi = cos(lp.phi);
coslam = cos(lp.lam);
lp.lam = adjlon(aatan2(cosphi * sin(lp.lam), sin(lp.phi)) + P->lamp);
lp.phi = aasin(- cosphi * coslam);
return (P->link->fwd(lp, P->link));
}
INVERSE(o_inverse); /* spheroid */
double coslam, sinphi, cosphi;
lp = P->link->inv(xy, P->link);
if (lp.lam != HUGE_VAL) {
coslam = cos(lp.lam -= P->lamp);
sinphi = sin(lp.phi);
cosphi = cos(lp.phi);
lp.phi = aasin(P->sphip * sinphi + P->cphip * cosphi * coslam);
lp.lam = aatan2(cosphi * sin(lp.lam), P->sphip * cosphi * coslam -
P->cphip * sinphi);
}
return (lp);
}
INVERSE(t_inverse); /* spheroid */
double cosphi, t;
lp = P->link->inv(xy, P->link);
if (lp.lam != HUGE_VAL) {
cosphi = cos(lp.phi);
t = lp.lam - P->lamp;
lp.lam = aatan2(cosphi * sin(t), - sin(lp.phi));
lp.phi = aasin(cosphi * cos(t));
}
return (lp);
}
FREEUP;
if (P) {
if (P->link)
(*(P->link->pfree))(P->link);
pj_dalloc(P);
}
}
ENTRY1(ob_tran, link)
int i;
double phip;
char *name, *s;
/* get name of projection to be translated */
if (!(name = pj_param(P->params, "so_proj").s)) E_ERROR(-26);
for (i = 0; (s = pj_list[i].id) && strcmp(name, s) ; ++i) ;
if (!s || !(P->link = (*pj_list[i].proj)(0))) E_ERROR(-37);
/* copy existing header into new */
P->es = 0.; /* force to spherical */
P->link->params = P->params;
P->link->over = P->over;
P->link->geoc = P->geoc;
P->link->a = P->a;
P->link->es = P->es;
P->link->ra = P->ra;
P->link->lam0 = P->lam0;
P->link->phi0 = P->phi0;
P->link->x0 = P->x0;
P->link->y0 = P->y0;
P->link->k0 = P->k0;
/* force spherical earth */
P->link->one_es = P->link->rone_es = 1.;
P->link->es = P->link->e = 0.;
if (!(P->link = pj_list[i].proj(P->link))) {
freeup(P);
return 0;
}
if (pj_param(P->params, "to_alpha").i) {
double lamc, phic, alpha;
lamc = pj_param(P->params, "ro_lon_c").f;
phic = pj_param(P->params, "ro_lat_c").f;
alpha = pj_param(P->params, "ro_alpha").f;
/*
if (fabs(phic) <= TOL ||
fabs(fabs(phic) - HALFPI) <= TOL ||
fabs(fabs(alpha) - HALFPI) <= TOL)
*/
if (fabs(fabs(phic) - HALFPI) <= TOL)
E_ERROR(-32);
P->lamp = lamc + aatan2(-cos(alpha), -sin(alpha) * sin(phic));
phip = aasin(cos(phic) * sin(alpha));
} else if (pj_param(P->params, "to_lat_p").i) { /* specified new pole */
P->lamp = pj_param(P->params, "ro_lon_p").f;
phip = pj_param(P->params, "ro_lat_p").f;
} else { /* specified new "equator" points */
double lam1, lam2, phi1, phi2, con;
lam1 = pj_param(P->params, "ro_lon_1").f;
phi1 = pj_param(P->params, "ro_lat_1").f;
lam2 = pj_param(P->params, "ro_lon_2").f;
phi2 = pj_param(P->params, "ro_lat_2").f;
if (fabs(phi1 - phi2) <= TOL ||
(con = fabs(phi1)) <= TOL ||
fabs(con - HALFPI) <= TOL ||
fabs(fabs(phi2) - HALFPI) <= TOL) E_ERROR(-33);
P->lamp = atan2(cos(phi1) * sin(phi2) * cos(lam1) -
sin(phi1) * cos(phi2) * cos(lam2),
sin(phi1) * cos(phi2) * sin(lam2) -
cos(phi1) * sin(phi2) * sin(lam1));
phip = atan(-cos(P->lamp - lam1) / tan(phi1));
}
if (fabs(phip) > TOL) { /* oblique */
P->cphip = cos(phip);
P->sphip = sin(phip);
P->fwd = o_forward;
P->inv = P->link->inv ? o_inverse : 0;
} else { /* transverse */
P->fwd = t_forward;
P->inv = P->link->inv ? t_inverse : 0;
}
ENDENTRY(P)