PJ_mbtfpq.c
1.32 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#define PJ_LIB__
#include <projects.h>
PROJ_HEAD(mbtfpq, "McBryde-Thomas Flat-Polar Quartic") "\n\tCyl., Sph.";
#define NITER 20
#define EPS 1e-7
#define ONETOL 1.000001
#define C 1.70710678118654752440
#define RC 0.58578643762690495119
#define FYC 1.87475828462269495505
#define RYC 0.53340209679417701685
#define FXC 0.31245971410378249250
#define RXC 3.20041258076506210122
FORWARD(s_forward); /* spheroid */
double th1, c;
int i;
c = C * sin(lp.phi);
for (i = NITER; i; --i) {
lp.phi -= th1 = (sin(.5*lp.phi) + sin(lp.phi) - c) /
(.5*cos(.5*lp.phi) + cos(lp.phi));
if (fabs(th1) < EPS) break;
}
xy.x = FXC * lp.lam * (1.0 + 2. * cos(lp.phi)/cos(0.5 * lp.phi));
xy.y = FYC * sin(0.5 * lp.phi);
return (xy);
}
INVERSE(s_inverse); /* spheroid */
double t;
lp.phi = RYC * xy.y;
if (fabs(lp.phi) > 1.) {
if (fabs(lp.phi) > ONETOL) I_ERROR
else if (lp.phi < 0.) { t = -1.; lp.phi = -PI; }
else { t = 1.; lp.phi = PI; }
} else
lp.phi = 2. * asin(t = lp.phi);
lp.lam = RXC * xy.x / (1. + 2. * cos(lp.phi)/cos(0.5 * lp.phi));
lp.phi = RC * (t + sin(lp.phi));
if (fabs(lp.phi) > 1.)
if (fabs(lp.phi) > ONETOL) I_ERROR
else lp.phi = lp.phi < 0. ? -HALFPI : HALFPI;
else
lp.phi = asin(lp.phi);
return (lp);
}
FREEUP; if (P) pj_dalloc(P); }
ENTRY0(mbtfpq) P->es = 0.; P->inv = s_inverse; P->fwd = s_forward; ENDENTRY(P)