geocent.c
15.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
/***************************************************************************/
/* RSC IDENTIFIER: GEOCENTRIC
*
* ABSTRACT
*
* This component provides conversions between Geodetic coordinates (latitude,
* longitude in radians and height in meters) and Geocentric coordinates
* (X, Y, Z) in meters.
*
* ERROR HANDLING
*
* This component checks parameters for valid values. If an invalid value
* is found, the error code is combined with the current error code using
* the bitwise or. This combining allows multiple error codes to be
* returned. The possible error codes are:
*
* GEOCENT_NO_ERROR : No errors occurred in function
* GEOCENT_LAT_ERROR : Latitude out of valid range
* (-90 to 90 degrees)
* GEOCENT_LON_ERROR : Longitude out of valid range
* (-180 to 360 degrees)
* GEOCENT_A_ERROR : Semi-major axis lessthan or equal to zero
* GEOCENT_B_ERROR : Semi-minor axis lessthan or equal to zero
* GEOCENT_A_LESS_B_ERROR : Semi-major axis less than semi-minor axis
*
*
* REUSE NOTES
*
* GEOCENTRIC is intended for reuse by any application that performs
* coordinate conversions between geodetic coordinates and geocentric
* coordinates.
*
*
* REFERENCES
*
* An Improved Algorithm for Geocentric to Geodetic Coordinate Conversion,
* Ralph Toms, February 1996 UCRL-JC-123138.
*
* Further information on GEOCENTRIC can be found in the Reuse Manual.
*
* GEOCENTRIC originated from : U.S. Army Topographic Engineering Center
* Geospatial Information Division
* 7701 Telegraph Road
* Alexandria, VA 22310-3864
*
* LICENSES
*
* None apply to this component.
*
* RESTRICTIONS
*
* GEOCENTRIC has no restrictions.
*
* ENVIRONMENT
*
* GEOCENTRIC was tested and certified in the following environments:
*
* 1. Solaris 2.5 with GCC version 2.8.1
* 2. Windows 95 with MS Visual C++ version 6
*
* MODIFICATIONS
*
* Date Description
* ---- -----------
* 25-02-97 Original Code
*
* $Log: geocent.c,v $
* Revision 1.7 2007/09/11 20:19:36 fwarmerdam
* avoid use of static variables to make reentrant
*
* Revision 1.6 2006/01/12 22:29:01 fwarmerdam
* make geocent.c globals static to avoid conflicts
*
* Revision 1.5 2004/10/25 15:34:36 fwarmerdam
* make names of geodetic funcs from geotrans unique
*
* Revision 1.4 2004/05/03 16:28:01 warmerda
* Apply iterative solution to geocentric_to_geodetic as suggestion from
* Lothar Gorling.
* http://bugzilla.remotesensing.org/show_bug.cgi?id=563
*
* Revision 1.3 2002/01/08 15:04:08 warmerda
* The latitude clamping fix from September in Convert_Geodetic_To_Geocentric
* was botched. Fixed up now.
*
*/
/***************************************************************************/
/*
* INCLUDES
*/
#include <math.h>
#include "geocent.h"
/*
* math.h - is needed for calls to sin, cos, tan and sqrt.
* geocent.h - is needed for Error codes and prototype error checking.
*/
/***************************************************************************/
/*
* DEFINES
*/
#define PI 3.14159265358979323e0
#define PI_OVER_2 (PI / 2.0e0)
#define FALSE 0
#define TRUE 1
#define COS_67P5 0.38268343236508977 /* cosine of 67.5 degrees */
#define AD_C 1.0026000 /* Toms region 1 constant */
/***************************************************************************/
/*
* FUNCTIONS
*/
long pj_Set_Geocentric_Parameters (GeocentricInfo *gi, double a, double b)
{ /* BEGIN Set_Geocentric_Parameters */
/*
* The function Set_Geocentric_Parameters receives the ellipsoid parameters
* as inputs and sets the corresponding state variables.
*
* a : Semi-major axis, in meters. (input)
* b : Semi-minor axis, in meters. (input)
*/
long Error_Code = GEOCENT_NO_ERROR;
if (a <= 0.0)
Error_Code |= GEOCENT_A_ERROR;
if (b <= 0.0)
Error_Code |= GEOCENT_B_ERROR;
if (a < b)
Error_Code |= GEOCENT_A_LESS_B_ERROR;
if (!Error_Code)
{
gi->Geocent_a = a;
gi->Geocent_b = b;
gi->Geocent_a2 = a * a;
gi->Geocent_b2 = b * b;
gi->Geocent_e2 = (gi->Geocent_a2 - gi->Geocent_b2) / gi->Geocent_a2;
gi->Geocent_ep2 = (gi->Geocent_a2 - gi->Geocent_b2) / gi->Geocent_b2;
}
return (Error_Code);
} /* END OF Set_Geocentric_Parameters */
void pj_Get_Geocentric_Parameters (GeocentricInfo *gi,
double *a,
double *b)
{ /* BEGIN Get_Geocentric_Parameters */
/*
* The function Get_Geocentric_Parameters returns the ellipsoid parameters
* to be used in geocentric coordinate conversions.
*
* a : Semi-major axis, in meters. (output)
* b : Semi-minor axis, in meters. (output)
*/
*a = gi->Geocent_a;
*b = gi->Geocent_b;
} /* END OF Get_Geocentric_Parameters */
long pj_Convert_Geodetic_To_Geocentric (GeocentricInfo *gi,
double Latitude,
double Longitude,
double Height,
double *X,
double *Y,
double *Z)
{ /* BEGIN Convert_Geodetic_To_Geocentric */
/*
* The function Convert_Geodetic_To_Geocentric converts geodetic coordinates
* (latitude, longitude, and height) to geocentric coordinates (X, Y, Z),
* according to the current ellipsoid parameters.
*
* Latitude : Geodetic latitude in radians (input)
* Longitude : Geodetic longitude in radians (input)
* Height : Geodetic height, in meters (input)
* X : Calculated Geocentric X coordinate, in meters (output)
* Y : Calculated Geocentric Y coordinate, in meters (output)
* Z : Calculated Geocentric Z coordinate, in meters (output)
*
*/
long Error_Code = GEOCENT_NO_ERROR;
double Rn; /* Earth radius at location */
double Sin_Lat; /* sin(Latitude) */
double Sin2_Lat; /* Square of sin(Latitude) */
double Cos_Lat; /* cos(Latitude) */
/*
** Don't blow up if Latitude is just a little out of the value
** range as it may just be a rounding issue. Also removed longitude
** test, it should be wrapped by cos() and sin(). NFW for PROJ.4, Sep/2001.
*/
if( Latitude < -PI_OVER_2 && Latitude > -1.001 * PI_OVER_2 )
Latitude = -PI_OVER_2;
else if( Latitude > PI_OVER_2 && Latitude < 1.001 * PI_OVER_2 )
Latitude = PI_OVER_2;
else if ((Latitude < -PI_OVER_2) || (Latitude > PI_OVER_2))
{ /* Latitude out of range */
Error_Code |= GEOCENT_LAT_ERROR;
}
if (!Error_Code)
{ /* no errors */
if (Longitude > PI)
Longitude -= (2*PI);
Sin_Lat = sin(Latitude);
Cos_Lat = cos(Latitude);
Sin2_Lat = Sin_Lat * Sin_Lat;
Rn = gi->Geocent_a / (sqrt(1.0e0 - gi->Geocent_e2 * Sin2_Lat));
*X = (Rn + Height) * Cos_Lat * cos(Longitude);
*Y = (Rn + Height) * Cos_Lat * sin(Longitude);
*Z = ((Rn * (1 - gi->Geocent_e2)) + Height) * Sin_Lat;
}
return (Error_Code);
} /* END OF Convert_Geodetic_To_Geocentric */
/*
* The function Convert_Geocentric_To_Geodetic converts geocentric
* coordinates (X, Y, Z) to geodetic coordinates (latitude, longitude,
* and height), according to the current ellipsoid parameters.
*
* X : Geocentric X coordinate, in meters. (input)
* Y : Geocentric Y coordinate, in meters. (input)
* Z : Geocentric Z coordinate, in meters. (input)
* Latitude : Calculated latitude value in radians. (output)
* Longitude : Calculated longitude value in radians. (output)
* Height : Calculated height value, in meters. (output)
*/
#define USE_ITERATIVE_METHOD
void pj_Convert_Geocentric_To_Geodetic (GeocentricInfo *gi,
double X,
double Y,
double Z,
double *Latitude,
double *Longitude,
double *Height)
{ /* BEGIN Convert_Geocentric_To_Geodetic */
#if !defined(USE_ITERATIVE_METHOD)
/*
* The method used here is derived from 'An Improved Algorithm for
* Geocentric to Geodetic Coordinate Conversion', by Ralph Toms, Feb 1996
*/
/* Note: Variable names follow the notation used in Toms, Feb 1996 */
double W; /* distance from Z axis */
double W2; /* square of distance from Z axis */
double T0; /* initial estimate of vertical component */
double T1; /* corrected estimate of vertical component */
double S0; /* initial estimate of horizontal component */
double S1; /* corrected estimate of horizontal component */
double Sin_B0; /* sin(B0), B0 is estimate of Bowring aux variable */
double Sin3_B0; /* cube of sin(B0) */
double Cos_B0; /* cos(B0) */
double Sin_p1; /* sin(phi1), phi1 is estimated latitude */
double Cos_p1; /* cos(phi1) */
double Rn; /* Earth radius at location */
double Sum; /* numerator of cos(phi1) */
int At_Pole; /* indicates location is in polar region */
At_Pole = FALSE;
if (X != 0.0)
{
*Longitude = atan2(Y,X);
}
else
{
if (Y > 0)
{
*Longitude = PI_OVER_2;
}
else if (Y < 0)
{
*Longitude = -PI_OVER_2;
}
else
{
At_Pole = TRUE;
*Longitude = 0.0;
if (Z > 0.0)
{ /* north pole */
*Latitude = PI_OVER_2;
}
else if (Z < 0.0)
{ /* south pole */
*Latitude = -PI_OVER_2;
}
else
{ /* center of earth */
*Latitude = PI_OVER_2;
*Height = -Geocent_b;
return;
}
}
}
W2 = X*X + Y*Y;
W = sqrt(W2);
T0 = Z * AD_C;
S0 = sqrt(T0 * T0 + W2);
Sin_B0 = T0 / S0;
Cos_B0 = W / S0;
Sin3_B0 = Sin_B0 * Sin_B0 * Sin_B0;
T1 = Z + gi->Geocent_b * gi->Geocent_ep2 * Sin3_B0;
Sum = W - gi->Geocent_a * gi->Geocent_e2 * Cos_B0 * Cos_B0 * Cos_B0;
S1 = sqrt(T1*T1 + Sum * Sum);
Sin_p1 = T1 / S1;
Cos_p1 = Sum / S1;
Rn = gi->Geocent_a / sqrt(1.0 - gi->Geocent_e2 * Sin_p1 * Sin_p1);
if (Cos_p1 >= COS_67P5)
{
*Height = W / Cos_p1 - Rn;
}
else if (Cos_p1 <= -COS_67P5)
{
*Height = W / -Cos_p1 - Rn;
}
else
{
*Height = Z / Sin_p1 + Rn * (gi->Geocent_e2 - 1.0);
}
if (At_Pole == FALSE)
{
*Latitude = atan(Sin_p1 / Cos_p1);
}
#else /* defined(USE_ITERATIVE_METHOD) */
/*
* Reference...
* ============
* Wenzel, H.-G.(1985): Hochauflösende Kugelfunktionsmodelle für
* das Gravitationspotential der Erde. Wiss. Arb. Univ. Hannover
* Nr. 137, p. 130-131.
* Programmed by GGA- Leibniz-Institue of Applied Geophysics
* Stilleweg 2
* D-30655 Hannover
* Federal Republic of Germany
* Internet: www.gga-hannover.de
*
* Hannover, March 1999, April 2004.
* see also: comments in statements
* remarks:
* Mathematically exact and because of symmetry of rotation-ellipsoid,
* each point (X,Y,Z) has at least two solutions (Latitude1,Longitude1,Height1) and
* (Latitude2,Longitude2,Height2). Is point=(0.,0.,Z) (P=0.), so you get even
* four solutions, every two symmetrical to the semi-minor axis.
* Here Height1 and Height2 have at least a difference in order of
* radius of curvature (e.g. (0,0,b)=> (90.,0.,0.) or (-90.,0.,-2b);
* (a+100.)*(sqrt(2.)/2.,sqrt(2.)/2.,0.) => (0.,45.,100.) or
* (0.,225.,-(2a+100.))).
* The algorithm always computes (Latitude,Longitude) with smallest |Height|.
* For normal computations, that means |Height|<10000.m, algorithm normally
* converges after to 2-3 steps!!!
* But if |Height| has the amount of length of ellipsoid's axis
* (e.g. -6300000.m), algorithm needs about 15 steps.
*/
/* local defintions and variables */
/* end-criterium of loop, accuracy of sin(Latitude) */
#define genau 1.E-12
#define genau2 (genau*genau)
#define maxiter 30
double P; /* distance between semi-minor axis and location */
double RR; /* distance between center and location */
double CT; /* sin of geocentric latitude */
double ST; /* cos of geocentric latitude */
double RX;
double RK;
double RN; /* Earth radius at location */
double CPHI0; /* cos of start or old geodetic latitude in iterations */
double SPHI0; /* sin of start or old geodetic latitude in iterations */
double CPHI; /* cos of searched geodetic latitude */
double SPHI; /* sin of searched geodetic latitude */
double SDPHI; /* end-criterium: addition-theorem of sin(Latitude(iter)-Latitude(iter-1)) */
int At_Pole; /* indicates location is in polar region */
int iter; /* # of continous iteration, max. 30 is always enough (s.a.) */
At_Pole = FALSE;
P = sqrt(X*X+Y*Y);
RR = sqrt(X*X+Y*Y+Z*Z);
/* special cases for latitude and longitude */
if (P/gi->Geocent_a < genau) {
/* special case, if P=0. (X=0., Y=0.) */
At_Pole = TRUE;
*Longitude = 0.;
/* if (X,Y,Z)=(0.,0.,0.) then Height becomes semi-minor axis
* of ellipsoid (=center of mass), Latitude becomes PI/2 */
if (RR/gi->Geocent_a < genau) {
*Latitude = PI_OVER_2;
*Height = -gi->Geocent_b;
return ;
}
}
else {
/* ellipsoidal (geodetic) longitude
* interval: -PI < Longitude <= +PI */
*Longitude=atan2(Y,X);
}
/* --------------------------------------------------------------
* Following iterative algorithm was developped by
* "Institut für Erdmessung", University of Hannover, July 1988.
* Internet: www.ife.uni-hannover.de
* Iterative computation of CPHI,SPHI and Height.
* Iteration of CPHI and SPHI to 10**-12 radian resp.
* 2*10**-7 arcsec.
* --------------------------------------------------------------
*/
CT = Z/RR;
ST = P/RR;
RX = 1.0/sqrt(1.0-gi->Geocent_e2*(2.0-gi->Geocent_e2)*ST*ST);
CPHI0 = ST*(1.0-gi->Geocent_e2)*RX;
SPHI0 = CT*RX;
iter = 0;
/* loop to find sin(Latitude) resp. Latitude
* until |sin(Latitude(iter)-Latitude(iter-1))| < genau */
do
{
iter++;
RN = gi->Geocent_a/sqrt(1.0-gi->Geocent_e2*SPHI0*SPHI0);
/* ellipsoidal (geodetic) height */
*Height = P*CPHI0+Z*SPHI0-RN*(1.0-gi->Geocent_e2*SPHI0*SPHI0);
RK = gi->Geocent_e2*RN/(RN+*Height);
RX = 1.0/sqrt(1.0-RK*(2.0-RK)*ST*ST);
CPHI = ST*(1.0-RK)*RX;
SPHI = CT*RX;
SDPHI = SPHI*CPHI0-CPHI*SPHI0;
CPHI0 = CPHI;
SPHI0 = SPHI;
}
while (SDPHI*SDPHI > genau2 && iter < maxiter);
/* ellipsoidal (geodetic) latitude */
*Latitude=atan(SPHI/fabs(CPHI));
return;
#endif /* defined(USE_ITERATIVE_METHOD) */
} /* END OF Convert_Geocentric_To_Geodetic */