PJ_aeqd.c
7.35 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/******************************************************************************
* $Id: PJ_aeqd.c 1504 2009-01-06 02:11:57Z warmerdam $
*
* Project: PROJ.4
* Purpose: Implementation of the aeqd (Azimuthal Equidistant) projection.
* Author: Gerald Evenden
*
******************************************************************************
* Copyright (c) 1995, Gerald Evenden
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*****************************************************************************/
#define PROJ_PARMS__ \
double sinph0; \
double cosph0; \
double *en; \
double M1; \
double N1; \
double Mp; \
double He; \
double G; \
int mode;
#define PJ_LIB__
#include <projects.h>
PJ_CVSID("$Id: PJ_aeqd.c 1504 2009-01-06 02:11:57Z warmerdam $");
PROJ_HEAD(aeqd, "Azimuthal Equidistant") "\n\tAzi, Sph&Ell\n\tlat_0 guam";
#define EPS10 1.e-10
#define TOL 1.e-14
#define N_POLE 0
#define S_POLE 1
#define EQUIT 2
#define OBLIQ 3
FORWARD(e_guam_fwd); /* Guam elliptical */
double cosphi, sinphi, t;
cosphi = cos(lp.phi);
sinphi = sin(lp.phi);
t = 1. / sqrt(1. - P->es * sinphi * sinphi);
xy.x = lp.lam * cosphi * t;
xy.y = pj_mlfn(lp.phi, sinphi, cosphi, P->en) - P->M1 +
.5 * lp.lam * lp.lam * cosphi * sinphi * t;
return (xy);
}
FORWARD(e_forward); /* elliptical */
double coslam, cosphi, sinphi, rho, s, H, H2, c, Az, t, ct, st, cA, sA;
coslam = cos(lp.lam);
cosphi = cos(lp.phi);
sinphi = sin(lp.phi);
switch (P->mode) {
case N_POLE:
coslam = - coslam;
case S_POLE:
xy.x = (rho = fabs(P->Mp - pj_mlfn(lp.phi, sinphi, cosphi, P->en))) *
sin(lp.lam);
xy.y = rho * coslam;
break;
case EQUIT:
case OBLIQ:
if (fabs(lp.lam) < EPS10 && fabs(lp.phi - P->phi0) < EPS10) {
xy.x = xy.y = 0.;
break;
}
t = atan2(P->one_es * sinphi + P->es * P->N1 * P->sinph0 *
sqrt(1. - P->es * sinphi * sinphi), cosphi);
ct = cos(t); st = sin(t);
Az = atan2(sin(lp.lam) * ct, P->cosph0 * st - P->sinph0 * coslam * ct);
cA = cos(Az); sA = sin(Az);
s = aasin( fabs(sA) < TOL ?
(P->cosph0 * st - P->sinph0 * coslam * ct) / cA :
sin(lp.lam) * ct / sA );
H = P->He * cA;
H2 = H * H;
c = P->N1 * s * (1. + s * s * (- H2 * (1. - H2)/6. +
s * ( P->G * H * (1. - 2. * H2 * H2) / 8. +
s * ((H2 * (4. - 7. * H2) - 3. * P->G * P->G * (1. - 7. * H2)) /
120. - s * P->G * H / 48.))));
xy.x = c * sA;
xy.y = c * cA;
break;
}
return (xy);
}
FORWARD(s_forward); /* spherical */
double coslam, cosphi, sinphi;
sinphi = sin(lp.phi);
cosphi = cos(lp.phi);
coslam = cos(lp.lam);
switch (P->mode) {
case EQUIT:
xy.y = cosphi * coslam;
goto oblcon;
case OBLIQ:
xy.y = P->sinph0 * sinphi + P->cosph0 * cosphi * coslam;
oblcon:
if (fabs(fabs(xy.y) - 1.) < TOL)
if (xy.y < 0.)
F_ERROR
else
xy.x = xy.y = 0.;
else {
xy.y = acos(xy.y);
xy.y /= sin(xy.y);
xy.x = xy.y * cosphi * sin(lp.lam);
xy.y *= (P->mode == EQUIT) ? sinphi :
P->cosph0 * sinphi - P->sinph0 * cosphi * coslam;
}
break;
case N_POLE:
lp.phi = -lp.phi;
coslam = -coslam;
case S_POLE:
if (fabs(lp.phi - HALFPI) < EPS10) F_ERROR;
xy.x = (xy.y = (HALFPI + lp.phi)) * sin(lp.lam);
xy.y *= coslam;
break;
}
return (xy);
}
INVERSE(e_guam_inv); /* Guam elliptical */
double x2, t;
int i;
x2 = 0.5 * xy.x * xy.x;
lp.phi = P->phi0;
for (i = 0; i < 3; ++i) {
t = P->e * sin(lp.phi);
lp.phi = pj_inv_mlfn(P->M1 + xy.y -
x2 * tan(lp.phi) * (t = sqrt(1. - t * t)), P->es, P->en);
}
lp.lam = xy.x * t / cos(lp.phi);
return (lp);
}
INVERSE(e_inverse); /* elliptical */
double c, Az, cosAz, A, B, D, E, F, psi, t;
if ((c = hypot(xy.x, xy.y)) < EPS10) {
lp.phi = P->phi0;
lp.lam = 0.;
return (lp);
}
if (P->mode == OBLIQ || P->mode == EQUIT) {
cosAz = cos(Az = atan2(xy.x, xy.y));
t = P->cosph0 * cosAz;
B = P->es * t / P->one_es;
A = - B * t;
B *= 3. * (1. - A) * P->sinph0;
D = c / P->N1;
E = D * (1. - D * D * (A * (1. + A) / 6. + B * (1. + 3.*A) * D / 24.));
F = 1. - E * E * (A / 2. + B * E / 6.);
psi = aasin(P->sinph0 * cos(E) + t * sin(E));
lp.lam = aasin(sin(Az) * sin(E) / cos(psi));
if ((t = fabs(psi)) < EPS10)
lp.phi = 0.;
else if (fabs(t - HALFPI) < 0.)
lp.phi = HALFPI;
else
lp.phi = atan((1. - P->es * F * P->sinph0 / sin(psi)) * tan(psi) /
P->one_es);
} else { /* Polar */
lp.phi = pj_inv_mlfn(P->mode == N_POLE ? P->Mp - c : P->Mp + c,
P->es, P->en);
lp.lam = atan2(xy.x, P->mode == N_POLE ? -xy.y : xy.y);
}
return (lp);
}
INVERSE(s_inverse); /* spherical */
double cosc, c_rh, sinc;
if ((c_rh = hypot(xy.x, xy.y)) > PI) {
if (c_rh - EPS10 > PI) I_ERROR;
c_rh = PI;
} else if (c_rh < EPS10) {
lp.phi = P->phi0;
lp.lam = 0.;
return (lp);
}
if (P->mode == OBLIQ || P->mode == EQUIT) {
sinc = sin(c_rh);
cosc = cos(c_rh);
if (P->mode == EQUIT) {
lp.phi = aasin(xy.y * sinc / c_rh);
xy.x *= sinc;
xy.y = cosc * c_rh;
} else {
lp.phi = aasin(cosc * P->sinph0 + xy.y * sinc * P->cosph0 /
c_rh);
xy.y = (cosc - P->sinph0 * sin(lp.phi)) * c_rh;
xy.x *= sinc * P->cosph0;
}
lp.lam = xy.y == 0. ? 0. : atan2(xy.x, xy.y);
} else if (P->mode == N_POLE) {
lp.phi = HALFPI - c_rh;
lp.lam = atan2(xy.x, -xy.y);
} else {
lp.phi = c_rh - HALFPI;
lp.lam = atan2(xy.x, xy.y);
}
return (lp);
}
FREEUP;
if (P) {
if (P->en)
pj_dalloc(P->en);
pj_dalloc(P);
}
}
ENTRY1(aeqd, en)
P->phi0 = pj_param(P->params, "rlat_0").f;
if (fabs(fabs(P->phi0) - HALFPI) < EPS10) {
P->mode = P->phi0 < 0. ? S_POLE : N_POLE;
P->sinph0 = P->phi0 < 0. ? -1. : 1.;
P->cosph0 = 0.;
} else if (fabs(P->phi0) < EPS10) {
P->mode = EQUIT;
P->sinph0 = 0.;
P->cosph0 = 1.;
} else {
P->mode = OBLIQ;
P->sinph0 = sin(P->phi0);
P->cosph0 = cos(P->phi0);
}
if (! P->es) {
P->inv = s_inverse; P->fwd = s_forward;
} else {
if (!(P->en = pj_enfn(P->es))) E_ERROR_0;
if (pj_param(P->params, "bguam").i) {
P->M1 = pj_mlfn(P->phi0, P->sinph0, P->cosph0, P->en);
P->inv = e_guam_inv; P->fwd = e_guam_fwd;
} else {
switch (P->mode) {
case N_POLE:
P->Mp = pj_mlfn(HALFPI, 1., 0., P->en);
break;
case S_POLE:
P->Mp = pj_mlfn(-HALFPI, -1., 0., P->en);
break;
case EQUIT:
case OBLIQ:
P->inv = e_inverse; P->fwd = e_forward;
P->N1 = 1. / sqrt(1. - P->es * P->sinph0 * P->sinph0);
P->G = P->sinph0 * (P->He = P->e / sqrt(P->one_es));
P->He *= P->cosph0;
break;
}
P->inv = e_inverse; P->fwd = e_forward;
}
}
ENDENTRY(P)