RMFractalTileProjection.m
4.43 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
//
// FractalTileProjection.m
// Images
//
// Created by Joseph Gentle on 27/08/08.
// Copyright 2008 __MyCompanyName__. All rights reserved.
//
#import "RMFractalTileProjection.h"
#import "RMMercatorToScreenProjection.h"
#import <math.h>
@implementation RMFractalTileProjection
@synthesize maxZoom, tileSideLength, bounds;
-(id) initWithBounds: (RMMercatorRect)_bounds TileSideLength:(int)_tileSideLength MaxZoom: (int)_maxZoom
{
if (![super init])
return nil;
bounds = _bounds;
tileSideLength = _tileSideLength;
maxZoom = _maxZoom;
scaleFactor = log2(bounds.size.width / tileSideLength);
return self;
}
-(float) normaliseZoom: (float) zoom
{
float normalised_zoom = roundf(zoom);
//16;
if (normalised_zoom > maxZoom)
normalised_zoom = maxZoom;
if (normalised_zoom < 0)
normalised_zoom = 0;
return normalised_zoom;
}
-(float) limitFromNormalisedZoom: (float) zoom
{
return exp2f(zoom);
}
-(RMMercatorPoint) constrainPointHorizontally: (RMMercatorPoint) point
{
while (point.x < bounds.origin.x)
point.x += bounds.size.width;
while (point.x > (bounds.origin.x + bounds.size.width))
point.x -= bounds.size.width;
// if (point.y < bounds.origin.y)
// point.y = bounds.origin.y;
// else if (point.y > (bounds.origin.y + bounds.size.height))
// point.y = bounds.origin.y + bounds.size.height;
return point;
}
-(RMTile) normaliseTile: (RMTile) tile
{
// The mask contains a 1 for every valid x-coordinate bit.
uint32_t mask = 1;
for (int i = 0; i < tile.zoom; i++)
mask <<= 1;
mask -= 1;
tile.x &= mask;
// If the tile's y coordinate is off the screen
if (tile.y & (~mask))
{
return RMTileDummy();
}
return tile;
}
/*
-(RMMercatorRect) constrainRectToBounds: (RMMercatorRect) rect
{
while (rect.origin.x < bounds.origin.x)
rect.origin.x += bounds.size.width;
while (rect.origin.x > (bounds.origin.x + bounds.size.width))
rect.origin.x -= bounds.size.width;
if (rect.origin.y < bounds.origin.y)
{
rect.size.height -= bounds.origin.y - rect.origin.y;
rect.origin.y = bounds.origin.y;
}
else if (point.y > (bounds.origin.y + bounds.size.height))
{
point.y = bounds.origin.y + bounds.size.height;
}
}*/
-(RMTilePoint) projectInternal: (RMMercatorPoint)mercator AtNormalisedZoom:(float)zoom Limit:(float) limit
{
RMTilePoint tile;
mercator = [self constrainPointHorizontally:mercator];
double x = (mercator.x - bounds.origin.x) / bounds.size.width * limit;
// Unfortunately, y is indexed from the bottom left.. hence we have to translate it.
double y = (double)limit * ((bounds.origin.y - mercator.y) / bounds.size.height + 1);
tile.tile.x = (uint32_t)x;
tile.tile.y = (uint32_t)y;
tile.tile.zoom = zoom;
tile.offset.x = (float)x - tile.tile.x;
tile.offset.y = (float)y - tile.tile.y;
return tile;
}
-(RMTilePoint) project: (RMMercatorPoint)mercator AtZoom:(float)zoom
{
float normalised_zoom = [self normaliseZoom:zoom];
float limit = [self limitFromNormalisedZoom:normalised_zoom];
return [self projectInternal:mercator AtNormalisedZoom:normalised_zoom Limit:limit];
}
-(RMTileRect) projectRect: (RMMercatorRect)mercator AtZoom:(float)zoom
{
int normalised_zoom = [self normaliseZoom:zoom];
float limit = [self limitFromNormalisedZoom:normalised_zoom];
RMTileRect rect;
// The origin for projectInternal will have to be the top left instead of the bottom left.
RMMercatorPoint topLeft = mercator.origin;
topLeft.y += mercator.size.height;
rect.origin = [self projectInternal:topLeft AtNormalisedZoom:normalised_zoom Limit:limit];
rect.size.width = mercator.size.width / bounds.size.width * limit;
rect.size.height = mercator.size.height / bounds.size.height * limit;
return rect;
}
-(RMTilePoint) project: (RMMercatorPoint)mercator AtScale:(float)scale
{
return [self project:mercator AtZoom:[self calculateZoomFromScale:scale]];
}
-(RMTileRect) projectRect: (RMMercatorRect)mercatorRect AtScale:(float)scale
{
return [self projectRect:mercatorRect AtZoom:[self calculateZoomFromScale:scale]];
}
-(RMTileRect) project: (RMMercatorToScreenProjection*)screen;
{
return [self projectRect:[screen mercatorBounds] AtScale:[screen scale]];
}
-(float) calculateZoomFromScale: (float) scale
{ // zoom = log2(bounds.width/tileSideLength) - log2(s)
return scaleFactor - log2(scale);
}
-(float) calculateNormalisedZoomFromScale: (float) scale
{
return [self normaliseZoom:[self calculateZoomFromScale:scale]];
}
-(float) calculateScaleFromZoom: (float) zoom
{
return bounds.size.width / 256 / exp2(zoom);
}
@end